AURORA'S TECHNOLOGICAL AND RESEARCH INSTITUTE

(Approved by AICTE and Affiliated to JNTUH) (Accredited by NAAC with 'A' Grade) Parvathapur, Uppal, Medipally (M), Medchal (D), Telangana, Hyderabad - 500 098

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING COURSE OUTCOMES (COs)

B.Tech. 1st Year I Sem Syllabus (w.e.f AY 2018-19) Common for EEE, CSE & IT

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should beable
		to:
MA101BS	Mathematics - I	 CO1: Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations. CO2: Find the Eigen values and Eigen vectors. CO3: Reduce the quadratic form to canonical formusing orthogonal transformations. CO4: Analyse the nature of sequence and series. CO5: Solve the applications on the mean value theorems. CO6: Evaluate the improper integrals using Betaand Gamma functions. CO7: Find the extreme values of functions of two variables with/ without constraints.
CH102BS	Chemistry	 At the end of this course, each student should beable to: CO1: The knowledge of atomic, molecular and electronic changes, band theory related toconductivity. CO2: The required principles and concepts of electrochemistry, corrosion and in understanding the problem of water and its

		treatments.
		CO3: The required skills to get clear concepts on basic
		spectroscopy and application to medicaland
		other fields.
		CO4: The knowledge of configurationally and
		conformational analysis of molecules and
		reaction mechanisms.
		At the end of this course, each student should beable
		to:
		CO1: To analyze and solve electrical circuits using
		network laws and theorems.
	Dacia Floatrical	CO2: To understand and analyze basic Electric and
EE103ES		Magnetic circuits.
	Engineering	CO3: To study the working principles of Electrical
		Machines.
		CO4: To introduce components of Low Voltage
		Electrical Installations .
		At the end of this course, each student should beable
		to:
		CO1: Study and practice on machine tools and their
		operations .
		CO2: Practice on manufacturing of components
		using workshop trades including pluming,
		fitting, carpentry, foundry, house wiring and
ME105ES	Engineering workshop	welding.
		CO3: Identify and apply suitable tools for different
		trades of Engineering processes including
		drilling, material removing, measuring,
		chiseling.
		CO4: Apply basic electrical engineering knowledge
		for house wiring practice.
		At the end of this course, each student should beable
EN105HS		to:
		CO1: Use English Language effectively in spokenand
	English	written forms.
		CO2: Comprehend the given texts and respond
		appropriately.
		CO3: Communicate confidently in various contexts
		and different cultures.

		CO4: Acquire basic proficiency in English including
		reading and listening comprehension, writing
		and speaking skills.
		At the end of this course, each student should beable
		to:
		CO1: Determination of parameters like hardnessand
		chloride content in water.
CUILOCOS	Engineering Chemistry	CO2: Estimation of rate constant of a reaction from
CHIOOBS	Lab	concentration – time relationships.
		CO3: Determination of physical properties like
		adsorption and viscosity.
		CO4: Calculation of Rf values of some organic
		molecules by TLC technique.
		At the end of this course, each student should beable
	English Language and	to:
		CO1: Better understanding of nuances of English
		language through audio- visual experience
EN107HS		and group activities .
		CO2: Neutralization of accent for intelligibility.
		CO3: Speaking skills with clarity and confidence
		which in turn enhances their employability
		skills.
		At the end of this course, each student should beable
		to:
		CO1: Get an exposure to basic electrical laws.
EE108ES		CO2: Understand the response of different types of
	Basic Electrical	electrical circuits to different excitations.
	Engineering Lab	CO3: Understand the measurement, calculation and
		relation between the basic electrical
		parameters.
		CO4: Understand the basic characteristics of
		transformers and electrical machines.

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should beable
		to:
		CO1: Identify whether the given differential
		equation of first order is exact or not.
		CO2: Solve higher differential equation and apply
		the concept of differential equation to real
MA2018S	Mathematics - II	world problems .
IVIA20165		CO3: Evaluate the multiple integrals and apply the
		concept to find areas, volumes, centre of mass
		and Gravity for cubes, sphere and rectangular
		parallelepiped.
		CO4: Evaluate the line, surface and volume integrals
		and converting them from one to
		another.
		At the end of this course, each student should beable
	Applied Physics	to:
		CO1: The student would be able to learn the
		fundamental concepts on Quantum behaviour
		of matter in its micro state.
		CO2: The knowledge of fundamentals of
		Semiconductor physics, Optoelectronics, Lasers
		and fibre optics enable the students to apply to
		various systems like communications , solar cell,
AP202BS		photo cells and so on.
		CO3: Design, characterization and study of properties
		of material help the students toprepare new
		materials for various engineering applications.
		CO4: The course also helps the students to be
		exposed to the phenomena of
		electromagnetism and also to have exposure
		on magnetic materials and dielectric
		materials.
	Programming For Problem	At the end of this course, each student should beable
CS203ES	Solving	to:
	Solving	CO1: To write algorithms and to draw flowcharts

B.Tech. 1st Year II Sem Syllabus (w.e.f AY 2018-19) Common for EEE, CSE & IT

		for solving problems.
		CO2: To convert the algorithms/flowcharts to C
		programs.
		CO3: To code and test a given logic in C
		programming language.
		CO4: To decompose a problem into functions andto
		develop modular reusable code.
		CO5: To use arrays, pointers, strings and structuresto
		write C programs.
		CO6: Searching and sorting problems.
		At the end of this course, each student should beable
		to:
ME204ES	Engineering Graphics	CO1: Preparing working drawings to communicate the
		ideas and information.
		CO2: Read, understand and interpret engineering
		drawings.
		At the end of this course, each student should beable
		to:
		CO1 : Apply the various procedures and techniquesfor
		the experiments.
		CO2 : Use the different measuring devices and
AP205BS	Applied Physics Lab	meters to record the data with precision.
		CO3 : Apply the mathematical concepts/equationsto
		obtain quantitative results.
		CO4 : Develop basic communication skills through
		working in groups in performing the
		laboratory experiments and by interpreting
		the results.
	Programming For Problem	At the end of this course, each student should beable
		to: CO1: Formulate the algorithms for simple
		Problems
CS206ES		CO2: Translate given algorithms to a working and correct
		nrogram
	Solving Lab	CO3: Correct syntax errors as reported by the
		compilers.
		CO4: Identify and correct logical errors
		encountered during execution
		CO5: Represent and manipulate data with arrays
		strings and structures
		strings and structures.

		CO6: Use pointers of different types .
		CO7: Create, read and write to and from simple textand
		binary files.
		CO8: Modularize the code with functions so that
		they can be reused.
		At the end of this course, each student should beable
*MC209ES	Environmental Science	to:
		Based on this course, the Engineering graduate will
		understand /evaluate / develop technologies on the
		basis of ecological principles and environmental
		regulations which in turn helps in sustainable
		development

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should beable
		to:
		CO1: Determine resultant of forces acting on a body and analyse equilibrium of a body subjected to a system of forces.
		CO2: Solve problem of bodies subjected to friction.
EE301ES	Engineering Mechanics	CO3: Find the location of centroid and calculatemoment of inertia of a given section.
		CO4: Understand the kinetics and kinematics of a
		body undergoing rectilinear, curvilinear,
		rotatory motion and rigid body motion.
		CO5: Solve problems using work energy equations
		for translation, fixed axis rotation and plane
		motion and solve problems of vibration.
	Electrical Circuit Analysis	At the end of this course, each student should beable
		to:
		CO1: Apply network theorems for the analysis of
FEDODO		electrical circuits.
EESUZPC		CO2: Obtain the transient and steady-state response of
		electrical circuits.
		CO3: Analyze circuits in the sinusoidal steady-state
		(single-phase and three-phase).
		CO4: Analyze two port circuit behavior.
EE303DC	Analog Floctronics	At the end of this course, each student should beable
EESUSPU	Andlog Electronics	to:
		CO1: Know the characteristics, utilization of various

B.Tech. II Year I Sem R18 Syllabus Electrical And Electronics Engineering

		components.
		CO2: Understand the biasing techniques
		CO3: Design and analyze various rectifiers, small
		signal amplifier circuits.
		CO4: Design sinusoidal and non-sinusoidal
		oscillators.
		CO5: A thorough understanding, functioning of OP-
		AMP, design OP-AMP based circuits with linear
		integrated circuits.
		At the end of this course, each student should beable
		to:
		CO1: Identify different parts of a DC machine &
		understand its operation
		CO2: Carry out different testing methods to
EE304PC	Electrical Machines - I	predetermine the efficiency of DC machines
		CO3: Understand different excitation and starting
		methods of DC machines
		CO4: Control the voltage and speed of a DC machines
		CO5: Analyze single phase and three phase
		transformers circuits.
	Electromagnetic Fields	At the end of this course, each student should beable
		to:
		CO1: To understand the basic laws of
		electromagnetism.
FE305PC		CO2: To obtain the electric and magnetic fields for
		simple configurations under static conditions.
		CO3: To analyze time varying electric and magnetic
		fields.
		CO3: To understand Maxwell's equation in different
		forms and different media.
		CO4: To understand the propagation of EM waves.
EE306PC		At the end of this course, each student should beable
	Electrical Machines Lab - I	to:
		CO1: Start and control the Different DC Machines.
		CO2: Assess the performance of different machinesusing
		different testing methods
		CO3: Identify different conditions required to be
		satisfied for self - excitation of DC Generators.
		CO4: Separate iron losses of DC machines into

		different components
		At the end of this course, each student should beable
		to:
		CO1: Know the characteristics, utilization of various
		components.
		CO2: Understand the biasing techniques
EE307PC	Analog Electronics Lab	CO3: Design and analyze various rectifiers, small
		signal amplifier circuits.
		CO4: Design sinusoidal and non-sinusoidal
		oscillators.
		CO5: A thorough understanding, functioning of OP-
		AMP, design OP-AMP based circuits with linear
		integrated circuits.
		At the end of this course, each student should beable
		to:
FF200DC	Flootrical Circuita Lab	CO1: Analyze complex DC and AC linear circuits
EE308PC	Electrical Circuits Lab	CO2: Apply concepts of electrical circuits across
		engineering
		CO3: Evaluate response in a given network by using
		theorems
		At the end of this course, each student should beable
		to:
		CO1: Students will have developed a better
		understanding of important issues related to
		gender in contemporary India.
		CO2: Students will be sensitized to basic dimensions of
		the biological, sociological, psychological andlegal
		aspects of gender. This will be achieved through
*N4C200	Condon Consitiontion Lab	discussion of materials derived from research,
*MC309	Gender Sensitization Lab	facts, everyday life, literature and film.
		CO3: Students will attain a finer grasp of how gender
		discrimination works in our society and how to
		counter it.
		CO4: Students will acquire insight into the gendered
		division of labour and its relation to politics and
		economics.
		CO5: Men and women students and professionals

together as equals.
CO6: Students will develop a sense of appreciation of
women in all walks of life.
CO7: Through providing accounts of studies and
movements as well as the new laws that provide
protection and relief to women, the textbook will
empower students to understand
and respond to gender violence.

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should beable
		to:
		CO1: Use the Laplace transforms techniques forsolving
		ODE's
		CO2: Find the root of a given equation.
	Laplace Transforms,	CO3: Estimate the value for the given data using
MA401BS	Numerical Methods &	interpolation
	Complex variables	CO4: Find the numerical solutions for a given ODE's
		CO5: Analyze the complex function with reference to
		their analyticity, integration using Cauchy's
		integral and residue theorems.
		CO6: Taylor's and Laurent's series expansions of
		complex Function
		At the end of this course, each student should beable
		to:
EE402DC	Electrical Machines – II	CO1: Understand the concepts of rotating magnetic
LL402FC		fields.
		CO2: Understand the operation of ac machines.
		CO3: Analyze performance characteristics of ac
		machines.
	Digital Electronics	At the end of this course, each student should beable
		to:
		CO1: Understand working of logic families and logic
		gates.
EE403PC		CO2: Design and implement Combinational and
		Sequential logic circuits.
		CO3: Understand the process of Analog to Digital
		conversion and Digital to Analog conversion.
		CO4: Be able to use PLDs to implement the given
		logical problem.
FF 40 400		At the end of this course, each student should beable
EE404PC	Control Systems	to:
		CO1: Understand the modeling of linear-time-

B.Tech. II Year II Sem R18 Syllabus Electrical and Electronics Engineering

		invariant systems using transfer function and
		statespace representations.
		CO2: Understand the concept of stability and its
		assessment for linear-time invariant systems.
		CO3: Design simple feedback controllers.
		At the end of this course, each student should beable
		to:
		CO1: Understand the concepts of power systems.
		CO2: Understand the operation of conventional
		generating stations and renewable sources of
EE405PC	Power System - I	electrical power.
		CO3: Evaluate the power tariff methods.
		CO4: Determine the electrical circuit parameters of
		transmission lines
		CO5: Understand the layout of substation and
		underground cables and corona.
		At the end of this course, each student should beable
		to:
		CO1: Understand working of logic families and logic
		gates.
EE406PC	Digital Electronics Lab	CO2: Design and implement Combinational and
		Sequential logic circuits.
		CO3: Understand the process of Analog to Digital
		conversion and Digital to Analog conversion.
		CO4: Be able to use PLDs to implement the given
		logical problem.
		At the end of this course, each student should beable
	Electrical Machines Lab -II	to:
		CO1: Assess the performance of different machinesusing
		different testing methods
EE407PC		CO2: To convert the Phase from three phase to two
		phase and vice versa
		CO3: Compensate the changes in terminal voltages of
		synchronous generator after estimating the
		change by different methods
		CO4: Control the active and reactive power flows in
		synchronous machines
		CO5: Start different machines and control the speed
		and power factor

	1	1
		At the end of this course, each student should beable
EE408PC	Control Systems Lab	 to: CO1: How to improve the system performance by selecting a suitable controller and/or a compensator for a specific application CO2: Apply various time domain and frequencydomain techniques to assess the system performance CO3: Apply various control strategies to different applications (example: Power systems, electrical drives etc) CO4: Test system controllability and observabilityusing state space representation and applications of state space representation to various systems
		 At the end of this course, each student should beable to: CO1 : Able to understand historical background of the constitutional making and its importance for building a democratic India, the structureof Indian government, the structure of state government, the local Administration. CO2: Able to apply the knowledge on directive principle of state policy, the knowledge in
*MC409	Constitution of India	 strengthening of the constitutional institutions like CAG, Election Commissionand UPSC for sustaining democracy. CO3: Able to analyze the History, features of Indian constitution, the role Governor and Chief Minister, role of state election commission, the decentralization of power between central, state and local self-government. CO4: Able to evaluate Preamble, Fundamental Rights and Duties, Zilla Panchayat, block level organization, various commissions of viz SC/ST/OBC and women.

Course Code	Course Title / Name	Course Outcomes
EE501PE	Power Electronics	 At the end of this course, each student should beable to: CO1: Understand the differences between signal level and power level devices. CO2: Analyze controlled rectifier circuits. CO3: Analyze the operation of DC-DC choppers. CO4: Analyze the operation of voltage source inverters.
EE502PE	Power System-II	 At the end of this course, each student should beable to: CO1: Analyze transmission line performance. CO2: Apply load compensation techniques to control reactive power. CO3: Understand the application of per unit quantities. CO4: Design over voltage protection and insulation Coordination. CO5: Determine the fault currents for symmetrical and unbalanced faults.
EE503PE	Measurements and Instrumentation	 At the end of this course, each student should beable to: CO1: Understand different types of measuring instruments, their construction, operation and characteristics CO2: Identify the instruments suitable for typical measurements CO3: Apply the knowledge about transducers and instrument transformers to use them effectively. CO4: Apply the knowledge of smart and digital metering for industrial applications
EE511PE	Professional Elective-I: Computer Architecture	At the end of this course, each student should beable to: CO1: Understand the concepts of microprocessors, their principles and practices.

B.Tech. III Year I Sem R18 Syllabus Electrical and Electronics Engineering

		CO2: Write efficient programs in assembly languageof
		the 8086 family of microprocessors.
		CO3: Organize a modern computer system and be
		able to relate it to real examples.
		CO4: Develop the programs in assembly language for
		80286, 80386 and MIPS processors in real and
		protected modes.
		CO5: Implement embedded applications using ATOM
		processor.
		At the end of this course, each student should beable
		to:
		CO1: Understand the basic physics related to various
		breakdown processes in solid, liquid and gaseous
	Professional Elective-I:	CO2: Knowledge of generation and measurement of
EE512PE	High Voltage Engineering	D. C., A.C., & Impulse voltages.
		CO3: Knowledge of tests on H. V. equipment and on
		insulating materials, as per the standards.
		CO4: Knowledge of how over-voltages arise in a
		power system, and protection against these
		overvoltages.
		At the end of this course, each student should beable
		to:
	Professional Elective-I: Electrical Machine Design	CO1: Understand the construction and performance
		characteristics of electrical machines.
		CO2: Understand the various factors which influencethe
EE513PE		design: electrical, magnetic and thermal loading of
		electrical machines
		CO3: Understand the principles of electrical machine
		design and carry out a basic design of an ac
		machine.
		CO4: Use software tools to do design calculations.
SM504MS		At the end of this course, each student should beable
		to:
	Business Economics and Financial Analysis	The students will understand the various Forms of
		Business and the impact of economic variables on the
		Business. The Demand, Supply, Production, Cost,
		Market Structure, Pricing aspects are learnt. The
		Students can study the firm's financial position by

		analysing the Financial Statements of a Company.
		At the end of this course, each student should beable
		to:
FESOSDC	Power System Simulation	CO1: Perform various transmission line calculations CO2:
LLJUJFC	Lab	Understand Different circuits time constants CO3:
		Analyze the experimental data and draw the
		conclusions.
		At the end of this course, each student should beable
		to:
		CO1: Understand the operating principles of various
FEEDEDC	Power Electronics Lab	power electronic converters.
EESUOPC	POWER Electronics Lab	CO2: Use power electronic simulation packages&
		hardware to develop the power converters.
		CO3: Analyze and choose the appropriate converters
		for various applications
		At the end of this course, each student should beable
		to:
		CO1: To choose instruments
FE507PC	Measurements and Instrumentation Lab	CO2: Test any instrument
		CO3: Find the accuracy of any instrument by
		performing experiment
		CO4: Calibrate PMMC instrument using D.C
		potentiometer
		At the end of this course, each student should beable
		to:
		CO1: To improve fluency in English through a well
		developed vocabulary and enable them to listen
		at normal conservational speed by educated
		English speakers and respond appropriately in
		different socio cultural and professional context
EN508HS	Advanced Communication Skills Lab	CO2: Further, they would be required to
		communicate their ideas relevantly and
		coherently in writing
		CO3: To prepare all the students for their
		placements
		CO4: Learn to overcome stage fear and make
		presentations with ease
		CO5: Learn how to pronounce words using the

		rules they have been taught
		At the end of this course, each student should beable
		to:
		CO1: Identify different types of Intellectual
		Properties (IPs), the right of ownership,
		scope of protection as well as the ways to
		create and to extract value from IP.
		CO2: Recognize the crucial role of IP in
		organizations of different industrial sectors
		for the purposes of product and technology
		development.
		CO3: Identify activities and constitute IP
		infringements and the remedies available to the
		IP owner and describe the precautious steps to
		be taken to prevent infringement of proprietary
		rights in products and technologydevelopment.
*MC510	Intellectual Property	CO4: Be familiar with the processes of Intellectual
	Rights	Property Management (IPM) and various
		approaches for IPM and conducting IP and IPM
		auditing and explain how IP can be managed as
		a strategic resource and suggestIPM strategy.
		CO5: Be able to anticipate and subject to critical
		analysis arguments relating to the
		development and reform of intellectual
		property right institutions and their likely
		impact on creativity and innovation.
		CO6: Be able to demonstrate a capacity to identify,
		apply and assess ownership rights and marketing
		protection under intellectual property law as
		applicable to information,
		ideas, new products and product marketing;
	•	

B.Tech. III Year II Sem R18 Syllabus Electrical And Electronics Engineering

Course Code	Course Title / Name	Course Outcomes
	Open Elective - I	Please Refer to ANNEXURE-I
EE611PE	Professional Elective-II Optimization Techniques	At the end of this course, each student should beable to:CO1: explain the need of optimization of engineering systemsCO2: understand optimization of electrical and electronics engineering problemsCO3: apply classical optimization techniques, linear
		CO5: Formulate optimization problems.
EE612PE	Professional Elective-II Power Semiconductor Drives	 At the end of this course, each student should beable to: CO1: Identify the drawbacks of speed control of motor by conventional methods. CO2: Differentiate Phase controlled and chopper-controlled DC drives speed-torque characteristics merits and demerits CO3: Understand Ac motor drive speed-torque characteristics using different control strategies its merits and demerits CO4: Describe Slip power recovery schemes
EE613PE	Professional Elective-II Wind and Solar Energy systems	 At the end of this course, each student should beable to: CO1: Understand the energy scenario and the consequent growths of the power generate renewable energy sources. CO2: Understand the basic physics of wind and solar power generation. CO3: Understand the power electronic interfaces for wind and solar generation. CO4: Understand the issues related to the grid-integration of solar and wind energy systems

		At the end of this course, each student should beable
		to:
		CO1: Differentiate various signal functions.
		CO2: Represent any arbitrary signal in time and
EE601PC	Signals and Systems	frequency domain.
		CO3: Understand the characteristics of linear time
		invariant systems.
		CO4: Analyze the signals with different transform
		technique
		At the end of this course, each student should beable
		to:
		CO1: Understands the internal architecture,
		organization and assembly language
		programming of 8086 processors.
	Microprocessors &	CO2: Understands the internal architecture,
EE602PC	Microcontrollors	organization and assembly language
		programming of 8051/controllers
		CO3: Understands the interfacing techniques to 8086
		and 8051 based systems.
		CO4: Understands the internal architecture of ARM
		processors and basic concepts of advanced
		ARM processors.
		At the end of this course, each student should beable
		to:
		CO1: Compare and contrast electromagnetic, staticand
		microprocessor-based relays
EE603DC	Power System Protection	CO2: Apply technology to protect power system
LLOUSFC	rower system rotection	components.
		CO3: Select relay settings of over current and
		distance relays.
		CO4: Analyze quenching mechanisms used in air, oil
		and vacuum circuit breakers
		At the end of this course, each student should beable
		to:
	Power System Operation	CO1: Understand operation and control of power
EE604PC	and Control	systems.
		CO2: Analyze various functions of Energy
		Management System (EMS) functions.
		CO3: Analyze whether the machine is in stable or

	•	
		unstable position.
		CO4: Understand power system deregulation and
		restructuring
		At the end of this course, each student should beable
		to:
FEGOEDC	Dower System Lab	CO1: Perform various load flow techniques
ELOUSPC		CO2: Understand Different protection methods
		CO3: Analyze the experimental data and draw the
		conclusions.
		At the end of this course, each student should beable to:
		CO1: Demonstrate ability to handle arithmetic
		operations using assembly language
		programming in TASM and training boards
		CO2: Demonstrate ability to handle logical
	Microprocessors & Microcontrollers Lab	operations using assembly language
EE606PC		programming in TASM
		CO3: Demonstrate ability to handle string
		instructions using assembly language
		programming in TASM
		CO4: Demonstrate ability to handle sorting
		operations and using assembly language
		programming in TASM
		At the end of this course, each student should beable
		to:
EE607DC	Signals and Systems Lab	CO1: Understand the concepts of continuous time
ELOUTPC		and discrete time systems.
		CO3: Understand sampling theorem and its
		implications.
		At the end of this course, each student should beable
*MC609		to:
		Based on this course, the Engineering graduate will
	Environmental Science	understand /evaluate / develop technologies on the
		basis of ecological principles and environmental
		regulations which in turn helps in sustainable
		development

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should beable
		to:
		CO1: Indentify the drawbacks of speed control ofmotor
		by conventional methods.
	Dewer Comission duater	CO2: Differentiate Phase controlled and chopper
EE701PC	Power Semiconductor	controlled DC drives speed-torque.
	Drives	CO3: Characteristics merits and demerits.
		CO4: Understand Ac motor drive speed-torque
		characteristics using different control strategiesits
		merits and demerits.
		CO5: Describe Slip power recovery schemes.
		At the end of this course, each student should beable
		to:
		CO1: Analyze the optimal scheduling of power plants.
		CO2: Analyze the steady state behavior of the power
FF702PC	Power System Operation and control	system for voltage and frequency.
		CO3: Fluctuations.
		CO4: Describe reactive power control of a power
		system.
		CO5: Design suitable controller to dampen the
		frequency and voltage steady state oscillations.
		At the end of this course, each student should beable
	Professional Elective– II Digital Signal Processing	CO1: Perform time, frequency, and 2 -transform
		analysis on signals and systems.
		CO2: Understand the inter-relationship between
		DFT and various transforms.
EE721PE		CO3: Understand the significance of various filter
		structures and effects of round off errors.
		CO4: Design a digital filter for a given specification.
		CO5: Understand the fast computation of DFT and
		appreciate the FFT processing.
		CO6: Understand the tradeoffs between normal
		and multi rate DSP techniques and finite
		length word effects.

B.Tech. IV Year I Sem R18 Syllabus Electrical and Electronics Engineering

		At the end of this course, each student should beable
		to:
		CO1: Compare EHV AC and HVDC system and to
		describe various types of DC links.
		CO2: Analyze Graetz circuit for rectifier and inverter
	Professional Elective-II	mode of operation .
EE722PE	HVDC Transmission	CO3: Describe various methods for the control of HVDC
		systems and to perform power flow analysis in
		AC/DC systems .
		CO4: Describe various protection methods for
		HVDC systems and classify Harmonics and
		design different types of filters.
		At the end of this course, each student should be
	Professional Elective– II	able to:
EE723PE	Switch Mode Power	After completion of this course the students are able to
	Supplies	understand the concepts and principle of operation of
		various types of switched mode power supply
		systems for both D.C. and A.C. outputs.
	Professional Elective– II Reliability Engineering	At the end of this course, each student should beable
		to:
		CO1: Model various systems applying reliability
		Networks.
EE724PE		CO2: Evaluate the reliability of simple and complex
		Systems.
		CO3: Estimate the limiting state probabilities of
		repairable systems.
		CO4: Apply various mathematical models for
		evaluating reliability of irreparable systems.
		At the end of this course, each student should beable
		to:
		CO1: Carry map S-plane and Z-plane, do state-
EE731PE		space Analysis.
	Professional Elective-III	CO2: Carry stability analysis in S-domain and Z-
	Digital Control Systems	Domains.
		CO3: Carry stability analysis through bilinear
		transformation and R-H criteria,
		CO4: Design of discrete-time control systems,
		design of lag, lead, lead-lag compensators, design
		of PID controllers and design of state

		feedback controllers and observers.
		CO5: Apply the above concepts to real-world
		electrical and electronics problems and
		applications.
		At the end of this course, each student should beable
		to:
		CO1: Know the severity of power quality problemsin
	Drofossional Flasting III	distribution system.
EE722DE	Professional Elective-III	CO2: Understand the concept of voltage sag
EE752PE		transformation from up-stream (higher
		voltages) to down-stream (lower voltage) .
		CO3: Concept of improving the power quality to
		sensitive load by various mitigating custom
		power devices.
		At the end of this course, each student should beable
		to:
		CO1: To understand various Power Electronics
	Professional Elective-III	devices such as SCR, TRIAC, DIAC, IGBT,GTO.
		CO2: To understand application of aforesaid Power
EE733PE	Modern Power Electronics	Electronics devices in Choppers, Inverters and
		Converters etc.
		CO3: To understand control of Electrical Motors
		through DC-DC converters, AC Converters etc.
		CO4: To understand the use of Inductors and
		Capacitors in Choppers, Inverters and
		Converters.
		At the end of this course, each student should beable
		CO1. Explain the need of entimization of
		engineering systems.
EE734PE		
	Professional Electiv - III	CO3: Apply classical optimization techniques
	Optimization Techniques	linear programming, simplex algorithm,
		transportation problem.
		CO4: Apply unconstrained optimization and
		constrained non-linear programming and
		dynamic programming.
		CO5: Formulate optimization problems.
1		

		At the end of this course, each student should beable
		to:
		CO1: Understand the purpose, functions, and operations
		of a PLC.
		CO2: Identify the basic components of the PLC andhow
		they function.
		CO3: View a directory of processor files using PLC
		software.
	Professional Elective-IV	CO4: Ability to gain knowledge on Programmable
EE741PE	Programmable Logic	Logic Controllers.
	Controllers	CO5: Will understand different types of Devices to which PLC input and output modules are
		Connected.
		CO6: To provide the knowledge about understand
		various types of PLC registers.
		CO7: Able to create ladder diagrams from process
		control descriptions.
		CO8: Ability to apply PLC timers and counters for the
		control of industrial processes.
		CO9: Able to use different types PLC functions,
		Data Handling Function.
		to:
		CO1 : Understand the basic concepts of FHV AC
		transmission.
		CO2: Get the Knowledge on EHV transmission line
	Professional Elective-IV	inductance and capacitance.
EE742PE	EHV AC Transmission	CO3: Understand the voltage gradients of
	Systems	conductor
		CO4: Identify corona effects on transmission lines
		CO5: Calculate electrostatic fields of EHVAC linesand
		its effects.
		CO6: Analyze travelling waves
		CO7: Distinguish various compensators for voltage
		control.
	Professional Elective-IV	At the end of this course, each student should beable
	Flexible A.C. Transmission	
EE743PE	Systems	CO1: Choose proper controller for the specific
		application based on system requirements .
		CU2: Understand various systems thoroughly and

		their requirements.
		CO3: Understand the control circuits of Shunt
		Controllers SVC & STATCOM for various
		functions viz. Transient stability
		Enhancement, voltage instability prevention
		and power oscillation damping .
		CO4: Understand the Power and control circuits of
		Series Controllers GCSC, TSSC and TCSC.
		At the end of this course, each student should beable
		to:
		CO1: To select different special machines as part of
		control system components.
EE744DE	Professional Elective-IV	CO2: To use special machines as transducers for
EE744PE	Special Machines	converting physical signals into electrical signals.
		CO3: To use micro-processors for controlling
		different machines.
		CO4: To understand the operation of different
		special machines.
		At the end of this course, each student should beable
		CO1: Design and Analyze electrical systems in timeand
		frequency domain.
EE703PC	Electrical Systems	CO2: Analyze various transmission lines and
	Simulation Lab	perform fault analysis.
		CO3: Model Load frequency control of Power
		Systems
		CO4: Design various Power Electronic Converters
		and Drives.
		At the end of this course, each student should beable
EE704PC		CO1: Get practical knowledge related to electrical.
	Electrical Workshop	networks
		CO4 : Design filter sizewit for eachiertion
		COE . Cot hordware skills such as coldering, winding
		COS. Get naruware skills such as soldering, winding
		etc.
		CUb: Get debugging skills.

		At the end of this course, each student should beable
	Industry Oriented Mini Project	to:
		CO1: Formulate a real world problem and developits requirements.
EE705PC		CO2: Student will be exposed to industrial awareness.
		CO3: Self learning technologies, methods and/or
		techniques that contribute to the software
		solution of the project.
		At the end of this course, each student should beable
	Seminar	to:
		CO1: Ability to work in actual working
EE706PC		environment.
		CO2: Ability to utilize technical resources
		CO3: Ability to write technical documents and giveoral presentations related to the work completed.

B.Tech. IV Year II Sem R16 Syllabus Electrical And Electronics Engineering

Course Code	Course Title / Name	Course Outcomes
	Open Elective – III	Please Refer to ANNEXURE-I
EE851PE	Professional Elective–V Artificial Neural Networks and Fuzzy Systems	 At the end of this course, each student should beable to: CO1: To understand artificial neural network models and their training algorithms. CO2: To understand the concept of fuzzy logic system components, fuzzification and defuzzification. CO3: Apply the above concepts to real-world problems and applications.
EE852PE	Professional Elective–V Electrical Distribution Systems	 At the end of this course, each student should beable to: CO1: Distinguish between transmission, and distribution line and design the feeders. CO2: Power loss and voltage drop of the feeders. CO3: Design protection of distribution systems. CO4: Understand the importance of voltage controland power factor improvement.
EE853PE	Professional Elective–V Wind, Solar and Hybrid Energy Systems Professional Elective–V	 At the end of this course, each student should beable to: CO1: Understand the energy scenario and the consequent growths of the power generate renewable energy sources. CO2: Understand the basic physics of wind andsolar power generation. CO3: Understand the power electronic interfacesfor wind and solar generation. CO4: Understand the issues related to the grid-integration of solar and wind energy systems.
EE854PE	High Voltage Engineering	to: CO1: Acquire knowledge on, basics of high voltage

		engineering
		CO2: Understand break-down phenomenon in
		different types of dielectrics.
		CO3: Understand generation and measurement of
		high voltages and currents.
		CO4: Understand the phenomenon of over- voltages,
		concept of insulation co-ordination.
		CO5: Know testing of various materials and
		electrical apparatus used in high voltage
		engineering.
		At the end of this course, each student should beable
		to:
		CO1: Acquire qualitative knowledge about the
		fabrication process of integrated circuit usingMOS transistors.
		CO2: Choose an appropriate inverter depending on
		specifications required for a circuit.
		CO3: Draw the layout of any logic circuit which helps
		to understand and estimate parasitic ofany
		logic circuit.
	Professional Elective–VI	CO4: Design different types of logic gates using
EE801PE	VLSI Design	CMOS inverter and analyze their transfer characteristics.
		CO5: Provide design concepts required to designbuilding
		blocks of data path using gates.
		CO6: Design simple memories using MOS
		transistors and can understand design of
		large memories.
		CO7: Design simple logic circuit using PLA, PAL, FPGA and CPLD.
		CO8: Understand different types of faults that can
		occur in a system and learn the concept of
		testing and adding extra hardware to improve
		At the end of this course, each student should beable
EE862PE		to:
	Professional Elective–VI	CO1: Recite the structure of an electricity marketin
	Smart Electric Grid	either regulated or deregulated market
		conditions.
		CO2: Understand the advantages of DC distribution

		and developing technologies in distribution
		CO3: Discriminate the trade-off between economics
		and reliability of an electric powersystem,
		differentiate various investment options (e.g.
		generation capacities, transmission, renewable,
		demand-side resources, etc) in electricity
		markets
		CO4: Analyze the development of smart and
		intelligent domestic systems
		At the end of this course, each student should beable
		to:
		CO1: Acquire knowledge on, electric drives
		characteristics and their applicability in
	Professional Elective–VI	industry based on the nature of different
EE863PE	Utilization of Electric	types of loads and their characteristics
	Power	CO2: Understands the concepts and methods of
		electric heating, welding, illumination and
		electric traction
		CO3: Apply the above concepts to real-world
		electrical and electronics problems and
		applications.
		At the end of this course, each student should beable
		to:
	Professional Elective–VI Electric and Hybrid Vehicles	CO1: Recite the structure of an electricity marketin
		either regulated or deregulated market
		conditions.
		CO2: Understand the advantages of DC distributionand
FF864PF		developing technologies in distribution.
		CO3: Discriminate the trade-off between economics
		and reliability of an electric powersystem,
		differentiate various investment options (e.g.
		generation capacities, transmission, renewable,
		demand-side resources, etc) in electricity
		markets.
		CO4: Analyze the development of smart and
		intelligent domestic systems.
		At the end of this course, each student should beable
EE801PC	Major Project	to:
		CO1: Ability to implement and execute well defined

Objective.
CO2: Ability to work in team at component leveland
system level.
CO3: Ability to troubleshoot.

Annexure-I

Open Elective –I

(Common for EEE, ECE, CSE, IT, ME)

Course Code	Course Title / Name	Course Outcomes
CE600OE	Open Elective –I Disaster Preparedness &Planning Management	 At the end of this course, each student should beable to: CO1: The application of Disaster Concepts to Management CO2: Analyzing Relationship between Development and Disasters. CO3: Ability to understand Categories of Disasters CO4: Realization of the responsibilities to society
CS600OE	Open Elective –I Entrepreneurship	At the end of this course, each student should beable to: It enables students to learn the basics of Entrepreneurship and entrepreneurial development which will help them to provide vision for their own Start-up.
CS601OE	Open Elective –I Fundamentals of Management for Engineers	At the end of this course, each student should beable to: The students understand the significance of Management in their Profession. The various Management Functions like Planning, Organizing, Staffing, Leading, Motivation and Control aspects are learnt in this course. The students can explore the Management Practices in their domain area.
CS602OE	Open Elective –I Cyber Law & Ethics	 At the end of this course, each student should beable to: CO1:The students will understand the importance of professional practice, Law and Ethics in their personal lives and professional careers. CO2:The students will learn the rights and responsibilities as an employee, team member and a global citizen
EC600OE	Open Elective –I Fundamentals of Internet of Things	 At the end of this course, each student should beable to: CO1: Known basic protocols in sensor networks. CO2:Program and configure Arduino boards for various designs.

		CO3: Python programming and interfacing for
		Raspberry Pi.
		CO4: Design IoT applications in different domains
		At the end of this course, each student should beable
		to:
		CO1:Model various systems applying reliability
FF6000F	Onon Elective	networks
EEGUUUE	Poliability Engineering	CO2:Evaluate the reliability of simple and complex
	Reliability Engineering	systems
		CO3:Estimate the limiting state probabilities of
		repairable systems
		CO4: Apply various mathematical models for
		evaluating reliability of irreparable systems
		At the end of this course, each student should beable
		to:
	Open Elective –I Renewable Energy Sources	CO1: Understand the principles of wind power and
FE601OE		solar photovoltaic power generation, fuel cells.
		CO2: Assess the cost of generation for conventional
		and renewable energy plants
		CO3: Design suitable power controller for wind and
		solar applications
		CO4: Analyze the issues involved in the integration
		of renewable energy sources to the grid
		At the end of this course, each student should beable
MEGOOOE	Open Elective –I	to:
MEGOUCE	Quantitative Analysis for	CO1: Familiar with issues that would crop up in
	Business Decisions	business
		CO2: Able to formulate Mathematical Model to
		resolve the issue
		CO3: Able to select technique for solving the
		formulated Mathematical Model
		CO4: Able to analyze the results obtained through
		the selected technique for implementation.

Open Elective –II

(Common for EEE, ECE, CSE, IT, ME)

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should beable
		to:
		CO1:Ability to select the data structures that
		efficiently model the information in a
		problem.
	Open Elective –II	CO2: Ability to assess efficiency trade-offs
CS700OE		among different data structure
		implementations or combinations.
		CO3:Implement and know the application of
		algorithms for sorting and pattern
		matching.
		CO4: Design programs using a variety of data
		structures, including hash tables, binary
		and general tree structures, search trees,
		tries, heaps, graphs, and AVL-trees.
		At the end of this course, each student should beable
		to:
		CO1: Ability to formulate an efficient problem space for
	Open Elective –II Artificial Intelligence	a problem expressed in natural language.
		CO2: Select a search algorithm for a problem and
CS7010E		estimate its time and space complexities.
		CO3: Possess the skill for representing knowledge
		using the appropriate technique for a given
		problem.
		CO4: Possess the ability to apply AI techniques to solve
		problems of game playing, and machine learning.
		At the end of this course, each student should beable
		to:
CS702OE		CO1: Examine Python syntax and semantics and be
		fluent in the use of Python flow control and
		functions.
		CO2: Demonstrate proficiency in handling Strings and
	Python Programming	File Systems.
		CO3: Create, run and manipulate Python Programs
		using core data structures like Lists, Dictionaries
		and use Regular Expressions.
		CU4:Interpret the concepts of Object-Oriented

		Programming as used in Python.
		CO5 :Implement exemplary applications related to
		Network Programming, Web Services and
		Databases in Python.
		At the end of this course, each student should beable
		to:
		CO1 :Develop Programs with reusability Develop
		programs to handle multitasking
CS703OE	Open Elective –II	CO2: Develop programs to handle exceptions
	Java Programming	CO3: Develop applications for a range of problems
		using object-oriented programming techniques
		CO4: Design simple Graphical User Interface
		Applications
		At the end of this course, each student should beable
		to:
	Open Elective –II	CO1: Learn about sensor Principle, Classification and
	Electronic Sensors	Characterization.
EC700OE		CO2: Explore the working of Electromechanical,
		Thermal, Magnetic, radiation and Electro analytic
		sensors Understand the basic concepts of Smart
		Sensors
		CO3: Design a system with sensors
		CO4: UNIT - I Sensors / Transducers: Principles,
		Classification, Parameters, Characteristics,
		Environ
		At the end of this course, each student should beable
		to:
	Open Elective –II Utilization Of Electrical Energy	CO1: Understand basic principles of electric heating
EE700OE		and welding.
		CO2: Determine the lighting requirements for flood
		lighting, household and industrial needs.
		CO3: Calculate heat developed in induction furnace.
		CO4:Evaluate speed time curves for traction
		At the end of this course, each student should beable
EE701OE		to:
	Open Elective –II Electric Drives And Control	CO1: Understand the various drive mechanisms and
		methods for energy conservation.
		CO2: Apply power electronic converters to control the
		speed of DC motors and induction motors.
		CO3: Evaluate the motor and power converter for a
		specific application.

		CO4: Develop closed loop control strategies of drives
Open Ele ME700OE Basic Mechai	Open Elective –II Basic Mechanical Engineering	At the end of this course, each student should beable to: CO1: To understand the mechanical equipment for usage
		 CO2:To familiarize with the general principles and requirements for refrigeration, manufacturing, CO3: To realize the techniques employed to engineering systems.

Open Elective –III

(Common for EEE, ECE, CSE, IT, ME)

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should beable
		to:
		CO1:Identify the environmental attributes to be
	Onen Flective – III	considered for the EIA study
	Environmental Impact	CO2:Formulate objectives of the EIA studies
CE800OE	Assessment	CO3:Identify the methodology to prepare rapid EIA
	///////////////////////////////////////	CO4: Prepare EIA reports and environmental
		management plans
		At the end of this course, each student should beable
		to:
	Open Elective – III Machine Learning	CO1: Understand the concepts of computational
		intelligence like machine learning
6600005		CO2: Ability to get the skill to apply machine
CS8000E		learning techniques to address the real
		time problems in different areas
		CO3:Understand the Neural Networks and its
		usage in machine learning application.
		At the end of this course, each student should beable
CS801OE	Open Elective – III Mobile Application Development	to:
		CO1: Student understands the working of Android OS
		Practically.
		CO2:Student will be able to develop Android user
		interfaces
		CO3:Student will be able to develop, deploy and
		maintain the Android Applications.

		At the end of this course, each student should beable
CS802OE	Open Elective – III Scripting Languages	to:
		CO1: Comprehend the differences between typical
		scripting languages and typical system and
		application programming languages.
		CO2:Gain knowledge of the strengths and weakness of
		Perl, TCL and Ruby; and select an appropriate
		language for solving a given problem.
		CO3: Acquire programming skills in scripting language
		At the end of this course, each student should beable
CS803OE	Open Elective – III	to:
	Database Management	CO1: Gain knowledge of fundamentals of DBMS,
	Systems	database design and normal forms
		CO2:Master the basics of SQL for retrieval and
		management of data.
		CO3:Be acquainted with the basics of transaction
		processing and concurrency control.
		CO4:Familiarity with database storage structures and
		access technique
EC800OE	Open Elective – III Measuring Instruments	At the end of this course, each student should beable
		to:
		CO1:Able to identify suitable sensors and transducers
		for real time applications.
		CO2: Able to translate theoretical concepts into
		working models. Able to understand the basic of
		measuring device and use them in relevant
		situation.
	Open Elective – III Basics Of Power Plant Engineering	Upon completion of the course, the students
		can understand the principles of operation
		for different power plants and their
EE800OE		economics

		At the end of this course, each student should beable
EE801OE		to:
		CO1: List and generally explain the main sources of
	Open Elective – III Energy Sources And Applications	energy and their primary applications nationally
		and internationally Understand the energy
		sources and scientific concepts/principles behind
		them
		CO2:Understand effect of using these sources on the
		environment and climate
		CO3 :Describe the challenges and problems associated
		with the use of various energy sources, including
		fossil fuels, with regard to future supply and the
		impact on the environment.
		CO4:List and describe the primary renewable energy
		resources and technologies.
		CO5:To quantify energy demands and make
		comparisons among energy uses, resources, and
		technologies.
		CO6:Collect and organize information on renewable
		energy technologies as a basis for further
		analysis and evaluation.
		CO7:Understand the Engineering involved in projects
		utilizing these sources
		At the end of this course, each student should beable
ME800OE		to:
	Open Elective – III Non-Conventional Sources Of Energy	CO1:Identify renewable energy sources and their
		utilization. Understand the basic concepts of
		solar radiation and analyze the working of solar
		and thermal systems. Understand principles of
		energy conversion from alternate sources
		including wind, geothermal, ocean, biomass,
		biogas and hydrogen.
		CO2: Understand the concepts and applications of fuel
		cells, thermoelectric convertor and MHD
		generator.
		CO3:Identify methods of energy storage for specific
		Applications