AURORA'S TECHNOLOGICAL AND RESEARCH INSTITUTE

(Approved by AICTE and Affiliated to JNTUH) (Accredited by NAAC with 'A' Grade) Parvathapur, Uppal, Medipally (M), Medchal (D), Telangana, Hyderabad - 500 098

DEPARTMENT OF CIVIL ENGINEERING COURSE OUTCOMES (COs)

CourseCode CourseTitle/Name CourseOutcomes At the end of this course, each student should be able to: **CO1:** Write the matrix representation of a set of line are quations and to analyse the solution of the system of equations. **CO2:**Find the Eigen values and Eigenvectors. MA101BS Mathematics-I **CO3**:Reduce the quadratic form to canonical form using orthogonal transformations. **CO4:**Analyse the nature of sequence and series. **CO5**:Solve the applications on the mean value theorems. **CO6:**Evaluate the improper integrals using Beta and Gamma functions. **CO7:**Find the extreme values of functions of two Variables with/ without constraints. At the end of this course, each student should be able to: PH102BS **Engineering Physics CO1:** The knowledge of Physics relevant to engineering is critical for converting ideas into technology. CO2: An understanding of Physics also helps engineers understand the working and limitations of existing devices and techniques, which eventually leads to new innovations and improvements. CO3: In the present course, the students can gain knowledge on the mechanism of physical bodies upon the action of forces on them, the generation, transmission and the detection of the Optical Phenomena like waves, Interference, diffraction, the principles of lasers and Fibre Optics.

B.Tech.1st Year I Semester R18 Syllabus Civil Engineering

		CO4 : Various chapters establish a strong foundation on the different kinds of characters of several materials and pave a way for them to use in at various technical and engineering applications.
CS103ES	Programming for Problem Solving	 At the end of this course, each student should be able to: CO1: To write algorithms and to draw flowcharts for solving problems. CO2:Toconvert the algorithms/flowcharts to C
		programs. CO3: To code and test a given logic in C programming language. CO4: To decompose a problem into functions and to
		develop modular reusable code. CO5: To use arrays, pointers, strings and structures to write C programs. CO6: Searching and sorting problems.
ME104ES	Engineering Graphics	At the end of this course, each student should be able to: CO1:Preparing working drawings to communicate the ideas and information. CO2: Read, understand and interpret engineering drawings.
ME104ES	Engineering Physics Lab	At the end of this course, each student should be able to:
		 CO1: Apply the various procedures and techniques for the experiments CO2: Use the different measuring devices and meters to record the data with precision CO3: Apply the mathematical concepts / equations to obtain quantitative results. CO4:Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results.

				At the end of this course, each student should be able to:
CS106ES	Programming Solving Lab	for	Problem	 CO1: Formulate the algorithms for simple problems. CO2: Tanslate given algorithms to a working and correct program CO3: Correct syntax errors as reported by the compilers CO4: Identify and correct logical errors encountered during execution CO5: Represent and manipulate data with arrays, strings and structures CO6: Use pointers of different types CO7: Create, read and write to and from simple text and binary files CO8: Modularize the code with functions so that they can be reused.
MC109ES	Environmental	Scien	ce	At the end of this course, each student should be able to: CO1: Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development.

B.Tech.1stYear II Semester R18 Syllabus-Civil Engineering

CourseCode	CourseTitle/Name	CourseOutcomes
		At the end of this course, each student should be able to:
MA201BS	Mathematics-II	CO1: Identify whether the given differentialequationoffirstorder isexactor not.
		CO2: Solve higher differential equation and apply the concept of differential equation to realworldproblems.
		CO3: Evaluate the multiple integrals and apply the concept to find areas, volumes, centre of mass and Gravity for cubes, sphere and
		rectangularparallelepiped. CO4: Evaluate the line, surface and volumeintegralsandconvertingthemfromoneto another.
		At the end of this course, each student should be able to:
CH202BS	Chemistry	CO1: The knowledge of atomic, molecular and electronic changes, band theory related to conductivity.
		 CO2: The required principles and concepts of electrochemistry, corrosion and in understanding the problem of water and its treatments CO3: The required skills to get clear concepts on
		basic spectroscopy and application to medical and other fields
		CO4: The knowledge of configurational and conformational analysis of molecules and reaction mechanisms.
		At the end of this course, each student should be able
		to:
		CO1: Determine resultant of forces acting on a body and analyse equilibrium of a body subjected to a system of forces.

ME203ES	Engineering Mechanics	 CO2: Solve problem of bodies subjected to friction. CO3: Find the location of centroid and calculate moment of inertia of a given section. CO4: Understand the kinetics and kinematics of a body undergoing rectilinear, curvilinear, rotatory motion and rigid body motion. CO5:Solve problems using work energy equations for translation, fixed axis rotation and plane motion and solve problems of vibration.
ME205ES	Engineering Workshop	 At the end of this course, each student should beable to: CO1:Study and practice on machine tools and their operations. CO2:Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry, foundry, house wiring and welding. CO3: Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. CO4: Apply basic electrical engineering knowledge for house wiring practice.
EN205HS	English	 At the end of this course, each student should be able to: CO1:Use English Language effectively in spoken and written forms CO2 :Comprehend the given texts and respond appropriately. CO3:Communicate confidently in various contexts and different cultures. CO4 :Acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.
CH206BS	Engineering Chemistry Lab	At the end of this course, each student should be able to: CO1: Determination of parameters like hardness and chloride content in water.

CO2:Estimation of rate constant of a reaction from
concentration – time relationships.
CO3: Determination of physical properties like
adsorption and viscosity
CO4: Calculation of Rf values of some organic molecules
by TLC technique.

		At the end of this course, each student should be able to:
* EN207HS	English Language and Communication Skills Lab	CO1: Better understanding of nuances of English language through audio- visual experience and group activities
		CO2: Neutralization of accent for intelligibility CO3: Speaking skills with clarity and confidence which in
		turn enhances their employability skills.

B.Tech. II Year I Semester R18 Syllabus-Civil Engineering

CourseCode CourseTitle/Name CourseOutcomes
--

		At the end of this course, each student should be able
		to:
		CO1: Apply the knowledge to calculate
		angles, distances and levels
		CO2:Identify data collection methods and
	Surveying and	prepare field notes
CE301PC	Geomatics	CO3: Understand the working principles of
		survey instruments, measurement errors
		and corrective measures
		CO4: Interpret survey data and compute areas
		and volumes, levels by different type of
		equipment and relate the knowledge to
		the modern equipment and
		methodologies.
		At the end of this course, each student should be able
		to:
		CO1: Site characterization and how to collect,
CE302PC	Engineering Geology	analyze, and report geologic data using
		standards in engineering practice
		CO2: The fundamentals of the engineering
		properties of Earth materials and fluids.
		CO3: Rock mass characterization and the mechanics
		of planar rock slides and topples.
		At the end of this course, each student should be able
		to:
CE303PC	Strength of Materials - I	
		CO1 :Describe the concepts and principles,
		understand the theory of elasticity
		including strain/displacement and
		Hooke's law relationships; and perform
		calculations, related to the strength of
		structured and mechanical components.
		CO2: Recognize various types loads applied on
		structural components of simple framing
		geometries and understand the nature of
		internal stresses that will develop within
		the components.

		 CO3:To evaluate the strains and deformation that will result due to the elastic stresses developed within the materials for simple types of loading. CO4: Analyze various situations involving structural members subjected to plane stresses by application of Mohr's circle of stress;
		CO5: Frame an idea to design a system, component, or process.
MA304BS	Probability and Statistics	At the end of this course, each student should be able to: CO1:Formulate and solve problems involving random variables and apply statistical methods for analysing experimental data.
CE305PC	Fluid Mechanics	 At the end of this course, each student should be able to: CO1: Understand the broad principles of fluid statics, kinematics and dynamics CO2: Understand definitions of the basic terms used in fluid mechanics and characteristics of fluids and its flow. CO3: Understand classifications of fluid flow. CO4: Be able to apply the continuity,
CE306PC	Surveying Lab	 momentum and energy principles. At the end of this course, each student should be able to: CO1: Apply the principle of surveying for civil Engineering Applications CO2:Calculation of areas, Drawing plans and contour maps using different measuring equipment at field level. CO3: Write a technical laboratory report.
CE307PC	Strength of Materials Lab	 At the end of this course, each student should be able to: CO1: Configure & Operate a data acquisition system using various testing machines of solid materials CO2:Compute and Analyze engineering values (e.g. stress or strain) from laboratory measurements CO3: Write a technical laboratory report.

		At the end of this course, each student should be able
		to:
CE308PC	Engineering Geology Lab	CO1: Understands the method and ways of investigations required for Civil Engg projects
		CO2: Identify the various rocks, minerals depending on geological classifications
		CO3 :Will able to learn to couple geologic expertise with
		the engineering properties of rock and
		unconsolidated materials in the characterization
		of geologic sites for civil work projects and the
		quantification of processes such as rock slides
		and settlement.
		CO4: Write a technical laboratory report.
		At the end of this course, each student should be able
		to:
MC309	Constitution of India	CO1 : Able to understand historical background of the
		constitutional making and its importance for
		building a democratic India, the structure of
		Indian government, the structure of state
		government, the local Administration.
		CO2: Able to apply the knowledge on directive principle
		of state policy, the knowledge in strengthening of
		the constitutional institutions like CAG, Election
		Commission and UPSC for sustaining democracy.
		CO3: Able to analyze the History, features of Indian
		constitution, the role Governor and Chief
		Minister, role of state election commission, the
		decentralization of power between central, state
		and local self-government.
		CO4: Able to evaluate Preamble, Fundamental Rights and
		Duties, Zilla Panchayat, block level organization,
		various commissions of viz SC/ST/OBC and
		women.

CourseCode	CourseTitle/Name	CourseOutcomes
		At the end of this course, each student should be able
		to:
		CO1: To analyze and solve electrical circuits using
		network laws and theorems.
		CO2: To understand and analyze basic Electric and
EE401ES	Basic Electrical and	Magnetic circuits
	Electronics Engineering	CO3: To study the working principles of Electrical
		Machines
		CO4: To introduce components of Low Voltage Electrical
		Installations
		CO5: To identify and characterize diodes and
		various types of transistors.
		At the end of this course, each student should be
		able to:
	Basic Mechanical	CO1: To understand the mechanical equipment for the
CE402ES	Engineering for Civil	usage at civil engineering systems,
	Engineers	CO2: To familiarize with the general principles and
		requirement for refrigeration, manufacturing,
		CO3: To realize the techniques employed to construct
		civil engineering systems.
		At the end of this course, each student should be able
		to:
	Building Materials,	CO1: Define the Basic terminology that is used in the
CE403PC	Construction and Planning	industry
		CO2: Categorize different building materials,
		properties and their uses
		CO3:Understand the Prevention of damage
		measures and good workmanship.
		CO4: Explain different building services.

		At the end of this course, each student should be able
		to:
		CO1 :Describe the concepts and principles, understand
		the theory of elasticity, and perform
	Strength of Materials - II	calculations, relative to the strength of
		structures and mechanical components in
CE404PC		particular to torsion and direct compression;
		CO2:To evaluate the strains and deformation that will
		result due to the elastic stresses developed within
		the materials for simple types of loading
		CO3: Analyze strength and stability of structural
		members subjected to Direct, and Direct and
		Bending stresses;
		CO4: Understand and evaluate the shear center and
		unsymmetrical bending.
		CO5: Frame an idea to design a system, component, or
		process.
		At the end of this course, each student should be able
		to:
		CO1: Apply their knowledge of fluid mechanics in
		addressing problems in open channels and
		hydraulic machinery.
CE405PC	Hydraulics and	CO2:Understand and solve problems in uniform,
	Hydraulic Machinery	gradually and rapidly varied flows in open channel
		in steady state conditions.
		CO3: Apply dimensional analysis and to differentiate the
		model, prototype and similitude conditions for
		practical problems.
		CO4: Get the knowledge on different hydraulic
		machinery devices and its principles that will be
		utilized in hydropower development and for
		other practical usages

		At the end of this course, each student should be able
		to:
		CO1: An ability to apply knowledge of mathematics,
CE406PC	Structural Analysis - I	science, and engineering
		CO2: Analyse the statically indeterminate bars and continuous beams
		CO3: Draw strength behaviour of members for static and dynamic loading.
		CO4: Calculate the stiffness parameters in beams and pin jointed trusses.
		CO5: Understand the indeterminacy aspects to consider
		for a total structural system.
		CO6: Identify, formulate, and solve engineering
		problems with real time loading.
		At the end of this course, each student should be able
		to:
		CO1: Use the Autocad commands for
CE407PC	Computer aided Civil	drawing 2D & 3D building drawings
	Engineering Drawing	required for different civil engg
		applications.
		CO2: Plan and draw Civil Engineering Buildings as per aspect and orientation.
		CO3: Presenting drawings as per user requirements
		and preparation of technical report.

CE409PC	Hydraulics and Hydraulic Machinery Lab	 At the end of this course, each student should be able to: CO1:Describe the basic measurement techniques of fluid mechanics and its appropriate application. CO2:Interpret the results obtained in the laboratory for various experiments. CO3:Discover the practical working of Hydraulic machines- different types of Turbines, Pumps, and other miscellaneous hydraulics machines. CO4: Compare the results of analytical models introduced in lecture to the actual behavior of real fluid flows and draw correct and sustainable conclusions. CO5: Write a technical laboratory report
EE409ES	Basic Electrical and Electronics Engineering Lab	 At the end of this course, each student should be able to: CO1:To analyze and solve electrical circuits using network laws and theorems CO2:To understand and analyze basic Electric and Magnetic circuits CO3:To study the working principles of Electrical Machines CO4: To introduce components of Low Voltage Electrical Installations CO5: To identify and characterize diodes and various types of transistors. At the end of this course, each student should be able to: CO1 :Students will have developed a better understanding of important issues related to gender in contemporary India CO2: Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from

MC409	Gender Sensitization Lab	CO3: Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
		CO4: Students will acquire insight into the gendered division of labour and its relation to politics and economics.
		CO5: Men and women students and professionals will be better equipped to work and live together as equals
		CO6: Students will develop a sense of appreciation of women in all walks of life.
		CO7: Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will
		empower students to understand and respond to gender violence.

B.Tech.III Year I Semester R18 Syllabus-Civil Engineering

CourseCode	CourseTitle/Name	CourseOutcomes
CE501	Structural Analysis-II	 At the end of this course, each student should be able to: CO1: Analyze the two hinged arches. CO2: Solve statically indeterminate beams and portal frames using classical methods CO3: Sketch the shear force and bending moment diagrams for indeterminate structures. CO4:Formulate the stiffness matrix and analyze the beams by matrix methods.
CE502PC	Geotechnical Engineering	 At the end of this course, each student should be able to: CO1: Characterize and classify the soils CO2: Able to estimate seepage, stresses under various loading conditions and compaction characteristics CO3: Able to analyse the compressibility of the soils CO4: Able to understand the strength of soils under various drainage conditions.
CE503PC	Structural Engineering –I (RCC)	 At the end of this course, each student should be able to: CO1:Compare and Design the singly reinforced, doubly reinforced and flanged sections. CO2: Design the axially loaded, uniaxial and biaxial bending columns. CO3:Classify the footings and Design the isolated square, rectangular and circular footings CO4: Distinguish and Design the one-way and two-way slabs.
		 At the end of this course, each student should be able to: CO1: An ability to apply the knowledge of mathematics, science and engineering in the areas of traffic engineering, highway development and maintenance.

CE504PC	Transportation Engineering	 CO2: An ability to design, conduct experiments to assess the suitability of the highway materials like soil, bitumen, aggregates and a variety of bituminous mixtures. Also the students will develop the ability to interpret the results and assess the suitability of these materials for construction of highways. CO3:An ability to design flexible and rigid highway pavements for varying traffic compositions as well as soil subgrade and environmental conditions using the standards stipulated by Indian Roads Congress. CO4:An ability to evaluate the structural and functional conditions of in-service highway pavements and provide solution in the form of routine maintenance measures or designed overlays using Indian Roads congress guidelines. CO5: An ability to assess the issues related to road traffic and provide engineering solutions supported with an understanding of road user psychological and
CE511PE	Professional Elective- I Concrete Technology	behavioural patterns. At the end of this course, each student should be able to: CO1:Determine the properties of concrete ingredients i.e. cement, sand, coarse aggregate by conducting different tests. Recognize the effects of the rheology and early age properties of concrete on its long-term behavior. CO2:Apply the use of various chemical admixtures and mineral additives to design cement-based materials with tailor-made properties CO3:Useadvanced laboratory techniques to characterize cement-based materials. CO4:Perform mix design and engineering properties of special concretes such as high-performance concrete, self-compacting concrete, and fibre reinforced concrete.

CE512PE	Professional Elective- I Theory of Elasticity	At the end of this course, each student should be able to: CO1:The more fundamental elasticity model of deformation should replace elementary strength of material analysis. CO2: Able to understand theory, formulate and to present solutions to a wide class of problems in 2D and 3D CO3: Acquire the foundation for advanced study in areas of solid mechanics.
CE513PE	Professional Elective- I Rock Mechanics	At the end of this course, each student should be able to: CO1: Able to determine the required rock properties and classify rock mass CO2:Determination of bearing capacity of rocks, CO3:Checking the stability of slopes, and design underground and open excavation. CO4:The students will be able to predict strength of rock mass with respect to various Civil Engineering applications
SM505MS	Engineering Economics and Accountancy	At the end of this course, each student should be able to: CO1: To perform and evaluate present and future worth of the alternate projects and to appraise projects by using traditional and DCF Methods. To carry out cost benefit analysis of projects and to calculate BEP of different alternative projects.
CE506PC	Highway Engineering and Concrete Technology Lab	At the end of this course, each student should be able to: CO1:Categorize the test on materials used Civil Engineering Building & Pavement constructions CO2:To perform the tests on concrete for it characterization.

		 CO3:To Design Concrete Mix Proportioning by Using Indian Standard Method. CO4:Examine the tests performed for Bitumen mixes. CO5:To prepare a laboratory report.
CE507PC	Geotechnical Engineering Lab	At the end of this course, each student should be able to: CO1:At the end of the course, the student will be able to Classify and evaluate the behavior of the soils subjected to various loads.
EN508HS	Advanced Communication Skills Lab	At the end of this course, each student should be able to: CO1:To improve the students鈥 fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts. CO2:Further, they would be required to communicate their ideas relevantly and coherently in writing. CO3:To prepare all the students for their placements.
*MC509	Intellectual Property Rights	 At the end of this course, each student should be able to: CO1: Identify different types of intellectual properties(IPS), the right of ownership, scope of protection as well as the ways to create and to extract value from IP CO2: Recognize the crucial role of IP in organizations of different industries sectors for the purpose of product and technology development.

B.Tech. III Year II Semester R18 Syllabus-Civil Engineering

CourseCode	CourseTitle/Name	CourseOutcomes
		At the end of this course, each student should be able
		to:
		CO1: Understand the different concepts and terms used
		in engineering hydrology
CE601PC	Hydrology & Water	CO2: To identify and explain various formulae used
	Resources Engineering	in estimation of surface and Ground water
		hydrology components.
		CO3: Demonstrate their knowledge to connect hydrology
		to the field requirement.
		At the end of this course, each student should be able
		to:
		CO1:Assess characteristics of water and wastewater and
		their impacts
CE602PC	Environmental Engineering	CO2:Estimate quantities of water and waste water
		and plan conveyance components.
		CO3: Design components of water and waste water
		treatment plants
		CO4:Be conversant with issues of air pollution and
		control.
		At the end of this course, each student should be
		able to:
		CO1: understand the principles and
		methods of Geotechnical Exploration
CE603PC	Foundation	CO2: decide the suitability of soils and check the
	Engineering	stability of slopes.
		CO3:calculate lateral earth pressures and check the
		stability of retaining walls.
		CO4: analyse and design the shallow and deep
		foundations
	Structural Engineering –II	At the end of this course, each student should be able
CE604PC	(Steel)	to:
		CO1:Analyze the tension members, compression
		members.
		CO2: Design the tension members, compression
		members and column bases and joints and

		connections
		CO3: Analyze and Design the beams including
		built-up sections and beam and
		connections.
		CO4: Identify and Design the various components of
		welded plate girder including stiffeners.
		weiden plate grace meidanig stirterers.
		At the end of this course, each student should be able
		to:
	ProfessionalElective-II:	CO1: Acquire the knowledge of evolution of process of
CE611PE	Prestressed Concrete	prestressing.
		CO2: Acquire the knowledge of various prestressing
		techniques.
		CO3: Develop skills in analysis design of prestressed
		structural elements as per the IS codal provisions
		structural ciclificates as per the is could provisions
CE612PE:	ProfessionalElective-II:	At the end of this course, each student should be able
	Elements Of Earthquake	
	Engineering	CO1: Explain and derive fundamental equations in
		structural dynamics
		CO2: Discuss and explain causes and Theories on
		earthquake, seismic waves, measurement of
		earthquakes
		CO3: Evaluate base shear using IS methods
		CO4: Design and Detail the reinforcement for
		earthquake forces
		At the end of this course, each student should be able
		to:
	ProfessionalElective-II:	CO1: Analyze the multistory building frames by various
CE613PE:	Advanced Structural Analysis	approximate methods
		CO2: Solve the continuous beams, portal frames by
		matrix methods of analysis
		CO3: Analyze and design of large frames with or without
		shear walls
		Shear Walls

	Open Elective-I:	Please Refer Annexure-I
CE605PC	Environmental Engineering Lab	 At the end of this course, each student should be able to: CO1:Understand about the equipment used to conduct the test procedures. CO2:Perform the experiments in the lab. CO3:Examine and Estimate water, waste water, air and soil Quality. CO4: Compare the water, air quality standards with prescribed standards set by the local governments CO5: Develop a report on the quality aspect of the environment.
CE606PC	Computer Aided Design Lab	At the end of this course, each student should be able to: CO1:Model the geometry of real-world structure Represent the physical model of structural element/structure CO2: Perform analysis CO3: Interpret from the Post processing results CO4: Design the structural elements and a system as per IS Codes.
*MC609	Environmental Science	At the end of this course, each student should be able to: CO1:Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development.

B.Tech.IV Year I Semester R18 Syllabus-Civil Engineering

CourseCode	CourseTitle/Name	CourseOutcomes
		At the end of this course, each student should be able
		to:
		CO1:Understand the technical specifications for various
		works to be performed for a project and how they
CE701PC	Estimation, Costing and	impact the cost of a structure.
	Project Management	CO2:Quantify the worth of a structure by evaluating
		quantities of constituents, derive their cost rates
		and build up the overall cost of the structure.
		CO3: Understand how competitive bidding works and how
		to submit a competitive bid proposal.
		CO4: An idea of how to optimize construction projects
		based on costs
		CO4: An idea how construction projects are administered
		with respect to contract structures and issues. CO5: An ability to put forward ideas and understandings to
		others with effective communication processes.
		others with enective communication processes.
		At the end of this course, each student should be able
		to:
		CO1: Describe different concepts and terms used
	Professional Elective –III	in Remote Sensing and its data
CE711PE	Remote Sensing & Gis	CO2: Understand the Data conversion and
		Process in different coordinate systems
		of GIS interface
		CO3:Evaluate the accuracy of Data and
		implementing a GIS
		CO4: Understand the applicability of RS and GIS for
		various applications.

CE712PE	Professional Elective –III Ground Improvement Techniques	At the end of this course, each student should be able to: CO1:Know the necessity of ground improvement CO2: Understand the various ground improvement techniques available CO3:Select & design suitable ground improvement technique for existing soil conditions in the field.
CE713PE	Professional Elective -III Advanced Structural Design	 At the end of this course, each student should be able to: CO1:Enhance the capabilities to design the special structural elements as per Indian standard code of practice. CO2: Analyze, design, draw and detailing of critical structural components with a level of accuracy.
CE721PE	Professional Elective –IV Irrigation And Hydraulic Structures	 At the end of this course, each student should be able to: CO1:Know types of water retaining structures for multiple purposes and its key parameters considered for planning and designing CO2:Understand details in any Irrigation System and its requirements. CO3:Know, Analyze and Design of a irrigation system components.
CE722PE	Professional Elective –IV Pipeline Engineering	At the end of this course, each student should be able to: CO1:Get an understanding of the key steps in a pipeline's lifecycle: design, construction, installation, asset management and maintenance.
CE723PE	Professional Elective –IV Ground Water Hydrology	At the end of this course, each student should be able to: CO1:Identify different fundamental equations and concepts as applied in the Groundwater studies CO2: Discuss and derive differential equation governing

		groundwater flow in three dimensions CO3: To solve groundwater mathematical equations and analyze pumping tests in steady and non steady flow cases CO4: Distinguish and understand the saline water intrusion problem in costal aquifers.
	Open Elective –II	Please Refer Annexure-I
CE703PC	Industrial Oriented Mini Project/ Summer Internship	 At the end of this course, each student should be able to: CO1:Formulate a real world problem and develop its Requirements. CO2:Student will be exposed to industrial Awareness CO3:Self learning technologies, methods and/or techniques that contribute to the software solution of the project.
CE704PC	Seminar	At the end of this course, each student should be able to: CO1:Ability to work in actual working environment. CO2:Ability to utilize technical resources CO3:Ability to write technical documents and give oral presentations related to the work completed.
CE705PC	Project Stage - I	 At the end of this course, each student should be able to: CO1:Formulate a real world problem and develop its Requirements. CO2:Student will be exposed to industrial awareness CO3:Self learning technologies, methods and/or techniques that contribute to the software solution of the project.

B.Tech.IV Year II Semester R18-Civil Engineering

CourseCode	CourseTitle/Name	CourseOutcomes
		At the end of this course, each student should be able to:
	Professional Elective –V	CO1 :Identify the physical and chemical composition of
CE811PE	Solid Waste Management	solid wastes CO2: Analyze the functional elements for solid waste management.
		CO3: Understand the techniques and methods used in
		transformation, conservation, and recovery of materials from solid wastes.
		CO4: Identify and design waste disposal systems.
CE812PE	Professional Elective –V Environmental Impact Assessment	At the end of this course, each student should be able to: CO1:Identify the environmental attributes to be considered for the EIA study CO2: Formulate objectives of the EIA studies CO3: Identify the methodology to prepare rapid EIA CO4: Prepare EIA reports and environmental management plans.
		At the end of this course, each student should be able to:
	Professional Elective –V	CO1 :Identify sampling and analysis techniques for air
CE813PE	Air Pollution	quality assessment
		CO2: Describe the plume behavior for atmospheric
		stability conditions CO3: Apply plume dispersion modelling and assess the concentrations
		CO4: Design air pollution controlling devices.

CE821PE	Professional Elective –VI Airport, Railways, And Waterways	At the end of this course, each student should be able to: CO1:An ability to design of runways and taxiways. CO2: An ability to design the infrastructure for large and small airports CO3: An ability to design various crossings and signals in Railway Projects. CO4: An ability plan the harbors and ports projects including the infrastructure required for new ports and harbors.
CE822PE	Professional Elective –VI Urban Transportation Planning	 At the end of this course, each student should be able to: CO1: An ability to apply the knowledge of mathematics, science and engineering in the areas of traffic engineering, highway development and maintenance. CO2: An ability to design, conduct experiments to assess the suitability of the highway materials like soil, bitumen, aggregates and a variety of bituminous mixtures. Also the students will develop the ability to interpret the results and assess the suitability of these materials for construction of highways. CO3:An ability to design flexible and rigid highway pavements for varying traffic compositions as well as soil subgrade and environmental conditions using the standards stipulated by Indian Roads Congress. CO4:An ability to evaluate the structural and functional conditions of in-service highway pavements and provide solution in the form of routine maintenance measures or designed overlays using Indian Roads congress guidelines. CO5: An ability to assess the issues related to road traffic and provide engineering solutions supported with an understanding of road user psychological and behavioural patterns.

	Professional Elective –VI	At the end of this course, each student should be able
CE823PE	Finite Element Methods for	to:
	Civil Engineering	Analyse simple structural elements using Finite Element
		approach.

Annexure-I

OpenElective–I (CommonforEEE, ECE, CSE, IT,ME)

CourseCode	CourseTitle/Name	CourseOutcomes
		At the end of this course, each student should be able
	OpenElective-	to:
CE600OE	IDisasterPreparedness&Pl	CO1: The application of Disaster Concepts to
	anningManagement	Management
		CO2: Analyzing Relationship between Development
		And Disasters.
		CO3: Ability to understand Categories of Disasters
		CO4: Realization of the responsibilities to society
CC (2000 F	On an Flacting 1	At the end of this course, each student should be
CS600OE	OpenElective-I	able to: It enables students to learn the basics of
	Entrepreneurship	
		Entrepreneurship and entrepreneurial development which will help them to provide vision for their own
		Start-up.
		At the end of this course, each student should be
	OpenElective-	able to:
CS6010E	IFundamentals	ThestudentsunderstandthesignificanceofManagementi
	ofManagement	ntheirProfession.ThevariousManagementFunctionslike
	forEngineers	Planning, Organizing, Staffing, Leading, Motivation and
		Control aspects
		arelearntinthiscourse. The students can explore the
		ManagementPractices in their domain area.

CS602OE	Open Elective–I CyberLaw&Ethics	At the end of this course, each student should be able to: CO1:The students will understand the importance of professional practice, Law and Ethics in their personal lives and professional careers. CO2:The students will learn the rights and responsibilitiesasanemployee,teammember and a global citizen.
EC600OE	Open Elective–I Fundamentals of Internet of Things	At the end of this course, each student should be able to: CO1: Knownbasicprotocolsinsensornetworks. CO2:ProgramandconfigureArduinoboardsfor Various designs. CO3: Pythonprogrammingandinterfacingfor RaspberryPi. CO4: Design IoT applications in different domains.
EE600OE	OpenElective–I ReliabilityEngineering	At the end of this course, each student should be able to: CO1:Model various systems applying reliability networks CO2:Evaluatethereliabilityofsimpleand complex systems CO3:Estimate the limiting state probabilities of repairablesystems CO4:Applyvariousmathematicalmodelsfor Evaluating reliability of irreparable systems.
EE601OE	OpenElective– IRenewableEnergy Sources	 At the end of this course, each student should be able to: CO1:Understand the principles of wind power and Solar photo voltaic power generation, fuel cells. CO2:Assess the cost of generation for conventional and renewable energy plants. CO3:Designsuitablepowercontrollerforwindand Solar applications. CO4:Analyze the issues involved in the integration of renewable energy sources to the grid.

	Open Elective-I	At the end of this course, each student should be able
ME600OE	Quantitative Analysis for	to:
	Business Decisions	CO1:Familiar with issues that would crop up in
		business
		CO2: Abletoformulate Mathematical Modelto
		resolvetheissue
		CO3:Able to select technique for solving the
		formulated Mathematical Model.
		CO4: Ableto analyze the results obtained through
		The selected technique for implementation.

OpenElective–II (CommonforEEE, ECE, CSE, IT,ME)

CourseCode	CourseTitle/Name	CourseOutcomes
		At the end of this course, each student should be able to:
		CO1: Ability to select the data structures that
		efficiently model the information in a
		problem.
CS7000E	OpenElective–II	CO2: Ability to assess efficiency trade-offs
	Data Structures	among different data structure
		implementations or combinations.
		CO3:Implement and know the application of
		algorithms for sorting and pattern
		matching.
		CO4: Design programs using a variety of data
		structures, including hash tables, binary
		and general tree structures, search trees,
		tries, heaps, graphs, and AVL-trees.
CS701OE	OpenElective–II Artificial Intelligence	 At the end of this course, each student should be able to: CO1:Ability to formulate an efficient problem space for a problem expressed in natural language. CO2:Select a search algorithm for a problem and estimate its time and space complexities. CO3:Possess the skill for representing knowledge using the appropriate technique for a given problem. CO4:Possess the ability to apply AI techniques to solve problems of game playing, and machine learning.
CS702OE	OpenElective–II Python Programming	 At the end of this course, each student should be able to: CO1:Examine Python syntax and semantics and be fluent in the use of Python flow control and functions. CO2:Demonstrate proficiency in handling Strings and File Systems.

		 CO3:Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions. CO4:Interpret the concepts of Object-Oriented Programming as used in Python. CO5:Implement exemplary applications related to Network Programming, Web Services and Databases in Python.
CS703OE	OpenElective–II Java Programming	At the end of this course, each student should be able to: CO1:Develop Programs with reusability Develop programs to handle multitasking CO2:Develop programs to handle exceptions CO3:Develop applications for a range of problems using object-oriented programming techniques CO4:Design simple Graphical User Interface Applications.
EC700OE	OpenElective–II Electronic Sensors	 At the end of this course, each student should be able to: CO1:Learn about sensor Principle, Classification and Characterization. CO2:Explore the working of Electromechanical, Thermal, Magnetic, radiation and Electro analytic sensors Understand the basic concepts of Smart Sensors CO3:Design a system with sensors CO4:UNIT - I Sensors / Transducers: Principles, Classification, Parameters, Characteristics, Environ
EE700OE	OpenElective–II Utilization Of Electrical Energy	 At the end of this course, each student should be able to: CO1:Understand basic principles of electric heating and welding. CO2:Determine the lighting requirements for flood lighting, household and industrial needs. CO3:Calculate heat developed in induction furnace. CO4:Evaluate speed time curves for traction.

		At the end of this course, each student should be able
	OpenElective–II	to:
EE701OE	Electric Drives And Control	 CO1:Understand the various drive mechanisms and methods for energy conservation. CO2:Apply power electronic converters to control the speed of DC motors and induction motors. CO3:Evaluate the motor and power converter for a specific application. CO4:Develop closed loop control strategies of drives
ME700OE	OpenElective–II Basic Mechanical Engineering	At the end of this course, each student should be able to: CO1: To understand the mechanical equipment for usage at engineering systems. CO2:To familiarize with the general principles and requirements for refrigeration, manufacturing, CO3: To realize the techniques employed to engineering systems.

Open Elective –III (CommonforEEE, ECE,CSE, IT,ME)

CourseCode	CourseTitle/Name	CourseOutcomes
		At the end of this course, each student should be able to: CO1:Identify the environmental attributes to be
CE800OE	Open Elective – IIIEnvironmental ImpactAssessment	considered for the EIA study CO2:Formulate objectives of the EIA studies CO3:Identify the methodology to prepare rapid EIA CO4:Prepare EIA reports and environmental management plans
CS800OE	Open Elective – III Machine Learning	At the end of this course, each student should be able to: CO1:Understand the concepts of computational intelligence like machine learning.

		 CO2:Ability to get the skill to apply machine learning techniques to address the real time problems in different areas. CO3:Understand the Neural Networks and its usage in machine learning application. At the end of this course, each student should be able
CS801OE	Open Elective – III Mobile Application Development	 to: CO1:Student understands the working of Android OS Practically. CO2:Student will be able to develop Android user interfaces CO3:Student will be able to develop, deploy and maintain the Android Applications.

		At the end of this course, each student should be able
	OpenElective–III	to:
CS802OE	Scripting Languages	CO1: Comprehend the differences between typical
		scripting languages and typical system and
		application programming languages.
		CO2:Gain knowledge of the strengths and weakness of
		Perl, TCL and Ruby; and select an appropriate
		language for solving a given problem.
		CO3: Acquire programming skills in scripting language
CS803OE	OpenElective–III	At the end of this course, each student should be able
	Database Management	to:
	Systems	CO1: Gain knowledge of fundamentals of DBMS,
		database design and normal forms
		CO2:Master the basics of SQL for retrieval and
		management of data.
		CO3:Be acquainted with the basics of transaction
		processing and concurrency control.
		CO4:Familiarity with database storage structures and
		access technique.

EC800OE	OpenElective–III Measuring Instruments	 At the end of this course, each student should be able to: CO1:Able to identify suitable sensors and transducers for real time applications. CO2:Able to translate theoretical concepts into working models. Able to understand the basic of measuring device and use them in relevant situation.
EE800OE	OpenElective–III Basics Of Power Plant Engineering	Upon completion of the course, the students can understand the principles of operation for different power plants and their economics.
EE801OE	OpenElective–III Energy Sources Ar Applications	 At the end of this course, each student should be able to: CO1:List and generally explain the main sources of energy and their primary applications nationally and internationally Understand the energy sources and scientific concepts/principles behind them CO2:Understand effect of using these sources on the environment and climate CO3:Describe the challenges and problems associated with the use of various energy sources, including fossil fuels, with regard to future supply and the impact on the environment. CO4:List and describe the primary renewable energy resources and technologies. CO5:To quantify energy demands and make comparisons among energy uses, resources, and technologies. CO6:Collect and organize information on renewable energy technologies as a basis for further analysis and evaluation. CO7:Understand the Engineering involved in projects utilizing these sources.

 OpenElective–III Non-Conventional Sources Of Energy	including wind, geothermal, ocean, biomass, biogas and hydrogen. CO2:Understand the concepts and applications of fuel cells, thermoelectric convertor and MHD generator.
	CO3 :Identify methods of energy storage for specific Applications.